
A Shift Towards Iterative and Open-Source Design for
Musical Interfaces

Owen Vallis1

New Zealand School of Music
1

P.O. Box 2332
Wellington, New Zealand

+064 04 463 5369

vallisowen@myvuw.ac.nz

Jordan Hochenbaum1

New Zealand School of Music
1

P.O. Box 2332
Wellington, New Zealand

+064 04 463 5369

hochenjord@myvuw.ac.nz

Ajay Kapur1, 2

California Institute of the Arts
2

24700 McBean Parkway
Valencia, CA 91355, USA

+01 661 952 3191

akapur@calarts.edu

Abstract

The aim of this paper is to define the process of iterative

interface design as it pertains to musical performance.

Embodying this design approach, the Monome OSC/MIDI USB

controller represents a minimalist, open-source hardware

device. The open-source nature of the device has allowed for a

small group of Monome users to modify the hardware,

firmware, and software associated with the interface. These user

driven modifications have allowed the re-imagining of the

interface for new and novel purposes, beyond even that of the

device’s original intentions. With development being driven by

a community of users, a device can become several related but

unique generations of musical controllers, each one focused on

a specific set of needs.

Keywords: Iterative Design, Monome, Arduinome, Arduino.

1. INTRODUCTION
As the power of computing devices has increased, the use of

software based musical instruments has become a reality. As a

result of this, musicians often need custom hardware interfaces

to facilitate the expressive potential of these software

instruments.

The laptop already offers a plethora of interface options,

but during a live performance, the nature of the laptop’s screen

can potentially isolate the musician’s actions from the audience.

The cumulative effect of this often leaves the audience feeling

disengaged, and confused about what the performer is actually

doing. Although creative programming can enable a laptop to

provide a performer with engaging expressivity, as is evidenced

by both Hans Koch’s piece bandoneonbook
1
, and the

framework SMELT[4], laptops are by no means optimized for a

highly expressive musical performance.

The limitations of the laptop as an expressive musical

interface can be mitigated through the use of external devices

optimized for live performance. While there already exist a

wide variety of such hardware interfaces, many of these have a

design based off of existing acoustic instruments. These designs

are often not ideal for interfacing with the diverse set of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

NIME2010, 15-18th June 2010, Sydney, Australia

Copyright remains with the author(s).

1
 www.hans-w-koch.net/performances/bandoneonbook.html,
Febuary 5, 2010

features, parameters, and interactions afforded by software

instruments.

One effective solution has been the development of custom

designed interfaces for musical expression. Artists such as Dan

Trueman, with the BoSSA[15], Andrew Schloss, with the

RadioDrum[10], and Curtis Bahn, with the sBass[1], have all

created new musical interfaces which allow for a high degree of

virtuosity when paired with custom software instruments. These

devices have been refined by the artist to meet their individual

needs, allowing for transparent implementation of the

performer’s musical intentions; however, this high degree of

customization also decreases the potential for augmentation of

the device by individuals other then the creator.

A contrasting approach to predefining interface behaviors

for a particular performer’s needs is to create an interface with a

selection of basic inputs and undefined behaviors. This allows

users to define their own behaviors in order to suit individual

software instrument requirements. Several commercial devices,

including the Stanton LEMUR, successfully take this approach;

however, even though the user can define the parameter

mapping and UI layout in software, the hardware and firmware

are locked away from the user community. This “closed box”

ideology leaves the device’s maturation to the developers, not

the users, potentially stunting the interface’s development.

Recently, a shift in musical interface design has been

occurring, one in which users create new iterations of an

interface, and become the driving force behind development.

The Monome2
 embodies this shift towards an open-source and

iterative approach to interface design, both on the software

level, and more importantly, on the hardware level. This

approach has allowed a growing community of users to extend

the device’s original functionality over several generations of

modified devices. Analogous to basic principles in object

oriented computing, a solid and extensible foundation has

allowed users to realize new interface ideas that the original

creators may not have originally intended, at the time of the

device’s creation.

In this paper: we define iterative controller development,

and provide several generations of the Monome as examples of

this concept in practice; focus on our own specific contributions

to the Monome hardware device by detailing our Arduinome,

and Chronome (RGB/Pressure sensitive Arduinome) interfaces;

present a sampling of the vast and varied software applications

developed by both the user community, and the authors; show

how this iterative design process can lead to an extremely broad

application of the interface in performance scenarios; compare

and contrast the Monome with the Yamaha Tenori-On[12], an

2
 http://monome.org, January 3, 2010

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

1

instrument designed by Japanese artist Toshio Iwai; define

inspiration based controller development, and present an

example comparing the process to an iteratively designed

device; and finally, discuss the potential difficulties of creating

an effective open and extensible device, and in doing so

illustrate how an iterative design process can lead a minimal

design to become a much more personal interface.

2. ITERATIVE DEVELOPMENT

Figure 1: Iterative development history of the Monome

We define iterative musical interface design as the process by

which a device is augmented by a single individual or a group

of individuals over a number of generations. The iterative

process may fork into separate and unique development streams

as new functionality is explored; these streams may also

converge at a later time, combining functionality from separate

streams into a new device that represents a majority of the

components, but not necessarily all components, from the

previous generation. Lastly, the schematics, firmware and

software of existing generations must all be open-source, and

freely available to the community, in order to facilitate the

creation of new generations of a device.

This process is comparable to software ideas such as open-

source development, object-oriented programming, and version

control systems. Each of these software ideas allow for

extensions of a base framework to create application specific

solutions for users. With the maturity of microcontroller

platforms such as the Arduino, analogous ideas within hardware

development have become a reality for artists.

In this section, we will show how the Monome exemplifies

iterative interface development. We will describe the original

device, and then show several new generations including the

Arduinome, Lumi, Octinct, and Chronome (RGB/Pressure

sensitive iteration).

2.1 Monome
Monome is both a two-layer uncoupled NxN device consisting

of a matrix of silicon buttons situated over a matrix of LEDs,

and the name of the company which designs and builds the

interfaces. Created in 2005 by Brian Crabtree, Monome's

minimalist design philosophy manifests in the company’s

production of interfaces that avoid complexity in order to

promote greater possible versatility. The Monome website

states that “we seek less complex, more versatile tools:

accessible, yet fundamentally adaptable. We believe these

parameters are most directly achieved through minimalistic

design, enabling users to more quickly discover new ways to

work, play, and connect. We see flexibility not as a feature, but

as a foundation.” This minimalist design philosophy is key to

the successful modularity of the interface. By limiting the input

and output components, the Monome allows a user to quickly,

and deeply, understand the interface; this greater understanding

leads to greater exploration as users begin to augment the

Monome’s functionality, and thereby increasingly customize

their connection, through the interface, to various instruments.

The vast array of user created custom applications for the

Monome interface is a testament to the effectiveness of this

design philosophy.

Even though the minimalist design of the Monome

provides a solid foundation on which to augment the

functionality of the device via software, Monome recognized

that hardware flexibility could be explored as well. Monome’s

early support for augmenting their interface with additional

analog sensors is an example of hardware extensibility being a

fundamental idea behind the interface. In addition, Monome

made the firmware for the interface freely available to the

public. This availability led to a Monome user’s firmware

modification to provide LED brightness control using PWM3
.

2.2 Arduinome
As a company, Monome only supports locally sourced materials

and labor, and produce a relatively small quantity of units

annually. Subsequently, it can be difficult to purchase a unit,

and if a unit can be procured it comes at a reasonable, but

considerable price (a result of sourcing all the parts locally).

Although Monome has provided online documents explaining

how to construct an interface from scratch, the project still

requires sourcing PCBs and using expensive Atmel

programmers. Additionally, the existing firmware requires

knowledge of the C programming language to modify and add

functionality to the interface.

All of these factors were motivations for a project started

by the authors, along with the help of Monome/Arduino

community members Brad Hill, and Ben Southall, in the

summer of 2008. This project, now the Arduinome, was an

effort to port the firmware, from the custom circuit used by the

original Monome, to the readily available and affordable

Arduino microcontroller platform. The Arduino’s extensive

library, documentation, and additional I/O ports provided even

greater potential for expansion and exploration by the existing

Monome community. This potential has resulted in users adding

components as complex as fully featured LCD displays, and

multiplexed rows of continuous controllers. Monome has fully

embraced this modification and exploration by including the

Arduinome on its website. The individuals working on the

Arduinomes have given back to the Monome community not

only hardware modifications, but also open-source Monome-

compatible software creations, further extending both the

Arduinome’s and the Monome’s functionality.

2.3 LUMI
Although the LUMI[6] constitutes a major departure from

previous generations—possibly stretching its inclusion as an

iterative Monome device—it does contain a major refinement to

the Monome design. Created at Stanford in 2009, this project

added pressure sensitivity to the Arduinome through

implementing a simple and effective method described by

Adrien Freed[5]. In addition, several continuous input devices

were added, such as potentiometers, IR sensors, and a pressure

sensitive touch screen. Although this work represents a serious

3
 http://post.monome.org/comments.php?DiscussionID=913,
November 20, 2009

Monome Iterations

Monome

Arduinome Octinct

Lumi
Arduinome

LCD

Arduinome

Knobs

RGB/Pressure

Arduinome

Monome

PWM Leds

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

2

extension of the Monome’s functionality, the project has not

been fully integrated by the larger user community. This could

be due to several factors, including custom firmware, custom

serial protocols, unreleased build information, or the larger user

community’s unfamiliarity with the work. It is possible that for

these reasons, the LUMI’s significant modifications have not

yet had as broad an impact on the iterative design process as

they potentially could.

2.4 Octinct
Almost as soon as the 40h model of the Monome was released,

users began to contemplate the possibility of adding RGB LEDs

to the device. One of the first successful iterations to include

this was the Octinct. Started by Brad Hill, Jonathan Guberman,

and Devon Jones, the Octinct was originally not publicly

available. In 2008, Brad Hill was given permission to make all

the code freely available and has since made several updates to

the firmware and hardware. The RGB LEDs require a

significant modification to the serial protocol in order to

facilitate the color control. For this reason, the Octinct

communicates with the host computer using a custom Python

serial application.

3. Chronome
The authors have designed a new iteration of the Arduinome

that takes inspiration from both the RGB LED support of the

Octinct, and the pressure sensitivity of the LUMI. The RGB

hardware implementation has been improved from the Octinct’s

current design, and the serial protocol for the Arduinome has

been updated to support both the RGB and the pressure data

now coming from the buttons. A key goal of the new device

was to bring both the RGB and pressure functionality into the

existing ArduinomeSerial application, while at the same time

continuing to use the Arduino platform as the microcontroller.

4. HARDWARE DESIGN

Figure 2: Arduinomes using two seperate silicon buttons

The authors have made several contributions to the iterative

designs process of the Monome, initially with the Arduinome,

and more recently with the Chronome. Both of these projects

helped expand the original device’s potential user base, and

promote further generations of design development by

providing new functionality, software, and documentation.

4.1 Arduinome Build
Both the Monome 40h schematics, and the firmware were made

available to the public when the original device was released.

This allowed individuals to source their own components and

build, or modify, the interface. With this information publicly

available, it could be asked why a port of the code to a new

micro controller platform was necessary? In response to this

question, when compared to the number of custom Monomes,

the huge number of Arduinomes built shows that there was a

need for a more “accessible” way to modify the device’s design.

The Arduino provided that access with its strong

community of builders, whom support both development and

user questions. Additionally, prior to the Arduinome, loading

firmware onto the Monome’s Atmel chip required a jtag

programmer. Although these are not difficult to acquire or use,

the level of difficulty is greater then loading firmware to an

Atmel via an Arduino, which provides a USB programmer. This

distinction between the jtag and the USB programmer is small,

but significant. Subtle differences like a USB programming port

are essential for increasing the likelihood that an individual

without prior microcontroller experience will attempt to build a

project like the Arduinome. Recently there has been great

development in tools that allow artists easier access to

technically challenging tasks such as electronics and software

programming. Projects such as Arduino
4,

 Processing
5,
 and

openFrameworks
6
 aim to provide artists with usable and

accessible tool sets for expression. The Arduino’s accessibility

made it an ideal platform on which to build the Arduinome and

has significantly contributed to the popularity of the project and

its development as an iterative controller.

Initial research revealed several existing attempts to port

the Monome to the Arduino. We found two critical components

of the build process already implemented: a detailed method for

re-flashing the Arduino’s FTDI chip with a Monome 40h-

compliant serial number, thus making it possible for the

Arduinome to be recognized by a computer as a Monome; and

an Arduino breakout PCB, which allowed for multiplexing of

the Arduino’s I/O pins to support all 128 connections on the

Arduinome (8x8 buttons & 8x8 LEDs). The authors were able

to provide the remaining component, a working port of the

Monome firmware to the Arduino platform. This new firmware

created an exact duplicate of the Monome functionality, while

creating an easy environment for adding features in the future.

Although the firmware worked, there was a difference between

the way in which the Arduino’s and the Monome’s FTDI chips

handled serial data. This difference led to a potential serial

buffer overflow, corrupting incoming data, and causing

intermittent behavior. Community member Ben Southall made

additional firmware modifications, converted the Arduino pin

calls to Atmel direct port calls, and added some Arduino

specific initializations to ArduinomeSerial, all of which

increased the Arduinome’s response/speed significantly and

eliminated the buffer issue.

Since the project was initially released to the Monome

community, significant Arduinome activity within the

community has warranted a separate and dedicated Arduinome

category in the Monome user forums. The easier access to the

firmware has provided the basis for a plethora of new firmware

modifications and off shoot projects. One remaining hurdle is

the lack of extensibility in the existing 40h serial protocol. This

makes it difficult to add completely new and novel functionality

to the current firmware without creating completely custom

versions of ArduinomeSerial. A community project is currently

underway at Monome to create such an extensible

“Multifunctional Protocol Router” allowing for this greater

growth and exploration of the device’s hardware potential.

4.2 Chronome Build
The Chronome build is a product of the RGB work done on the

Octinct, the pressure sensitivity work explored by the Lumi, and

the authors’ effort to create a new serial protocol to support this

additional functionality. We have also focused additional

research on optimizing the power consumption of the device,

4
 http://www.arduino.cc/, November 20, 2009

5
http://processing.org/, November 20, 2009

6
http://www.openframeworks.cc/, November 20, 2009

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

3

and increasing the response of the pressure sensor data. Finally,

with the release of the arduino mega, the Chronome is able to

do analog multiplexing for the pressure data, and drive the RGB

LED matrix using the same TI5940 chips used in the Octinct.

5. SOFTWARE

Figure 3: Software development for the

Monome/Arduinome

Along with strong iterative hardware development, the

Monome community also creates a variety of open source

software to interface specifically with the device. The design of

these software programs parallel the iterative design process of

the hardware devices, including new software features to take

advantage of additional functionality in newer generations of

the interface. Monome community software developers actively

listen to requests from non-programming users, and implement

these ideas into new applications for the device. Although many

of these programs are not restricted to the Monome, the

applications are designed with a monome-centric mindset,

taking advantage of the decoupled matrices of the device.

Created with such programming languages as MaxMSP, Java,

Python, and Chuck, applications like MLR, Polygome, and

SevenUp-Live
7
 take unique approaches to utilizing the minimal

and undefined behaviors of the Monome devices. The authors

have also contributed several new applications, including a

library of functions in Chuck, a behavior-mapping utility in

Reaktor, and a Self Organizing Map visualization using the new

Chronome.

5.1 Community Software
MLR is an application originally developed by Brian Crabtree

in 2006, and has since moved through several iterations created

by both Brian and Monome users. The application takes an

audio buffer and then maps it into eight segments along a row

of the Monome buttons. As the buffer progress through the

audio, the Monome displays buffer-position by lighting LEDs

sequentially along a single row. Users can “chop” or re-

sequence the audio by pressing the buttons along the row

corresponding to the desired buffer. The program is quite

powerful, including support for several banks of audio, time

stretching, and audio effects.

Polygome is an application developed by Matthew

Davidson. The NxN grid of the Monome is used to divide up

separate pitch intervals along rows and columns. Patterns are

then defined by the user, and can be activated by holding down

buttons on the Monome. The resulting music is very

reminiscent of minimalist compositions by composers such as

Steve Riech, Phillip Glass, and Terry Riley.

While the two prior examples are fully functional stand

alone applications, both written in Max/MSP, SevenUp-Live,

7
 http://docs.monome.org/doku.php?id=app

written by Adam Ribaudo, is a utility application meant to

extend the functionality of another program through the use of

the Monome. This application provides many utility functions

for seamlessly integrating the Monome with the Digital Audio

Workstation, Ableton Live. Additionally, the application allows

for basic MIDI sequencing, Ableton clip launching, control of

sliders and other track parameters, as well as a setting for

manipulating playback position of audio clips. This particular

application of the Monome provides more traditional controller

functionality than the previous examples, however it still shows

the ability for the Monome to be highly customized to a

particular user or group of users needs.

5.2 Author’s Software
While the Monome’s basic button functionality is immediately

useful to performing musicians as event actuators, the true

potential of the device is realized when the simple button

behavior is creatively extended through the use of software

programs. With this in mind the authors have created a library

of extended functions using the Chuck programming language.

This library can be used in the designing of complex behaviors

for the Monome.

While the Chuck library provides a powerful set of

functions for extending behaviors, the authors wanted an

application to provide quick, basic behavior definitions using a

simple and intuitive graphical interface. Built in Reaktor,

nomeState represents the second iteration of behavior mapping

applications written by the authors, and provides a matrix of

behavior options; each cell can define three separate button

behaviors, as well as groupings for radio button functionality.

The program also links a button press with the underlying LED

to provide visual feedback of a press event, while still allowing

access to the LED from other applications for additional

visualization data. Finally, Reaktor’s support for saving

application state provides the ability to easily save a snapshot of

any behavior configuration created.

Lastly, a SOM visualization application has been created

to explore music information retrieval research using the

Chronome; the authors, for use with multi-touch surfaces, have

already designed a similar application[3]. The application

allows user to navigate a library of audio material that has been

sorted according to similarities between the audio samples.

Several different features are extracted from each audio sample,

and then used for the comparisons. These samples are then

automatically grouped by similarities, and mapped across the

RGB spectrum in order to visualize their similarity distribution.

6. PERFORMANCE SCENARIOS
Through the application of custom hardware modifications, as

well as software development, iteratively designed interfaces

can be used in many novel ways. Due to the customization, the

Monome, and its many iterations, can be found in live

performance, installations, and pedagogical contexts.

6.1 Live electronic music performance
The Monome is an effective instrument for live performance for

several reasons. The arrangement of 8x8, 8x16, or 16x16

buttons makes for musically relevant subdivisions of material

with respect to a 4/4 time signature, although the device’s

undefined button behavior allows for mapping to any time

signature the performer would like. This potential emphasis on

time versus pitch as the delimiting factor between buttons, leads

to interesting reimagining’s of a musical material’s temporal

components. Additionally, the decoupled LED matrix acts as a

rich source of visual feedback for both the performing musician

and the audience watching the performer. Finally, the grid

Monome Software

MonomeSerial/
AruinomeSerial

NomeState7up-Live

MLR

PolyGome
SOM

Visualization

Chuck Library

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

4

layout of buttons invites musicians to explore pitch groupings

and relationships in interesting ways, e.g., allowing for 2D tonal

relationships.

Popular musicians such as Daedelus, Sahy-uhns, Tehn and

FlipMu all take advantage of the Monome/Arduinome’s ability

to visualize the physicality of their musical performance, using

this to engage the audience and create new music.

6.2 Installations
The Monome’s simple interface provides an effective solution

for intuitive interactive installation work. In 2007 artist Robert

Henke created the piece “Cyclone”, a commissioned work for

the Dis-patch festival in Belgrade, Serbia. This work centered

on a large 16x16 Monome which acted as an interface for a

surrounding circle of speakers. In 2008 the design group

Squidsoup, using two 8x8 Monomes for interaction with a 3D

visualization cube, created “The Stealth Project” installation

shown at the Ormeau Baths Gallery in Belfas. Both of these

installations used the minimal inputs available to act as an

intuitive and approachable interface to their work.

6.3 Pedagogical Interface (Theka Display)
We have developed software to for pedagogical purposes to

allow a rhythm structures to be taught to a student studying

North Indian Classical music. One of the key elements of

practicing is to keep time with a commercial Tabla Box, which

has a number of rhythmic cycles including Tin taal (16 beats),

Dadra(6 beats), Jhaap Taal (7 beats), Kherva (8 beats). We use

the Arduinome as a feedback system to give visual cues of

position in the cycle. The user can also tap in where they would

like to start the cycle, based on what they are rehearsing.

7. DISCUSSIONS & CONCLUSIONS
The Monome represents an interesting, subtle, and significant

shift in how a community of users may approach interface

design. This paper has shown how a simple minimalist design

can elicit a variety of custom uses of, and modifications to, an

interface. Instead of being a veritable “Swiss-army knife”

interface, through an iterative process of functionality

expansion, the Monome has become a custom device for many

different people, modified by users for specific needs. This

ability to modify the core functionality of the Monome is its

greatest strength, allowing for re-imaginings of the interface’s

intended use.

Contrasting the Monome with the Yamaha Tenori-On

reinforces the idea that an open and iterative design approach,

compared to a closed box design approach, can lead to greater

versatility in use. The Tenori-On was introduced by Yamaha in

2008, and like the Monome, contains a two-layer, uncoupled,

NxN device consisting of a matrix of buttons situated over a

matrix of LEDs. Unlike the Monome however, the Tenori-On’s

firmware is locked, its design specs are not made public, and

the device does not easily support hardware modifications.

When compared with the Monome, the Tenori-On has not seen

the same community of users, library of applications, or variety

of uses develop. In fact, ideas such as firmware modifications

are not even possible with the Tenori-On. Even though these

two devices share a very similar form, the history and function

of the two interfaces could not be more divergent. The Monome

has spawned a wealth of custom applications, a thriving user

community, and several major hardware iterations, while the

Tenori-On has remained an interesting and well-conceived

instrument, though unchanged in its design and fixed in its

functions.

This ability for an interface to mutate is found not only in

iteratively designed devices, but also in devices that are

designed from inspiration. Both iterative design and inspiration

based design share a process in which a device is augmented by

a single user or group of users; however, while iteratively

designed devices keep the vast majority of the preceding

generation’s design intact, inspiration based interface design

may only keep a single idea from the original device. Both

approaches are valid processes, but one may be preferable to the

other depending on the designer’s intentions—to refine an

existing device, or to create something novel. By creating

entirely novel, but loosely related interfaces—instead of

incrementally modifying them—fewer related iterations are

likely; inspiration based devices have a proclivity to be the final

realization of a device, expending no further energies towards

refinement of the design. As an example of inspiration based

development, the authors will take the evolution of musical

head based controllers.

Figure 4: Iterative vs. Inspiration based Design

The KiOm project[8] is an inspiration based design that

drew on many years of previous research from seemingly

disparate devices. Motion tracking interfaces using a variety of

sensors[13, 16], camera based head tracking interfaces[9, 11],

and experiments in the musical applications of

accelerometers[2, 7, 14] were all used as inspiration for the

KiOm. Even though some of these projects explored seemingly

separate ideas, they all shared a focus on translating natural

body movement into control sources for the manipulation of

sound. By taking small ideas from all of these individual

projects, the KiOm developers were able to create a novel

device; however, to date, the KiOm remains developmentally

fixed at the same place it was at the time the paper was written.

No community of users has sprung up around the device, no

additional functionality has been added, and no work towards

integrating updated components into the device has been

attempted. There is no doubt that the KiOm will inspire future

projects to explore and expand upon some aspect of itself, but it

seems unlikely that any further refinements will occur.

Finally, while this paper has advocated the design of

hardware without pre-defined functionality, there is a downside

to a highly programmable approach[2]. The increase in

modularity requires an initial investment to set up the desired

functionality. This allows for the user to create a custom

interface, but also creates an initial decrease in “plug-n-play”

productivity. Once the device is configured, productivity will

begin to increase as the interface allows the user an extremely

custom and intuitive device. In contrast, fixed functionality

provides immediate productivity, but very often prevents the

interface from communicating in exactly the way the user

Iterative

Monome
Arduinome

Octinct

Lumi

Arduinome
LCD

Arduinome
Knobs

RGB/Pressure
Arduinome

Monome
PWM Leds

Inspiration

KIOM

TapShoe

The
Mouthesizer

PikaPika TGarden

FaceSense

Winkler, T. Paradiso, J.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

5

desires, thus preventing as high a level of virtuosity as possible.

These two examples can be thought of as extremities of a

spectrum, onto which you can map the usability versus

customization of a device. At one end you can place sensors,

micro controllers, and software development, on the opposite

end you can place volume controls, panning knobs, filter knobs,

or any input or output device assigned to only a single task. The

Monome effectively sits over a very large area of this spectrum,

allowing for both complete hardware customization, and

immediate use. This broad usage is due to several factors

including open-source hardware/software, limited hardware

components, and a strong community involvement in the

device’s application development. The Monome represents an

iterative model in which expert users, making up a small

percentage of the user community, develop new and innovative

uses of the device, while the majority of the users benefit from

these applications and express new ideas to the rest of the

community. This community aspect may be the most important

component to the Monome’s success as an iteratively designed

interface. Although a matrix of buttons and LEDs is not a novel

idea by itself, allowing for a community to develop, modify,

and re-envision the device through an iterative process has

created a new model for open-source interface design; a model

that encompasses both basic users and advanced developers

alike.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the hard work, vision,

and openness of Brian Crabtree and Kelly Cain at Monome.

The great work of Brad Hill and Ben Southall in helping to

make the Arduinome a reality. As well as the inspiration for

these devices and ideas, stemming from the work of creative

interface designers Perry Cook, Curtis Bahn, and Dan Trueman.

9. REFERENCES
[1] Bahn, C. and Trueman, D. interface: electronic chamber

ensemble. In Proceedings of the 2001 Conference on New

Interfaces for Musical Expression. National University of

Singapore, Seattle, Washington, 2001.

[2] Cook, P. Principles for designing computer music

controllers. In Proceedings of the 2001 Conference on New

Interfaces for Musical Expression. National University of

Singapore, Seattle, Washington, 2001.

[3] Diakopolus, D., Vallis, O., Hochenbaum, J., Murphy, J.,

and Kapur, A. 21st Century Electronica: MIR Techniques

for Classification and Performance. In Proceedings of the

10th International Society for Music Information Retrieval

Conference, Kobe, Japan, 2009.

[4] Fiebrink, R., Wang, G., and Cook, P. R. Don't forget the

laptop: using native input capabilities for expressive

musical control. In Proceedings of the 2007 Conference on

New Interfaces for Musical Expression. ACM, New York,

NY USA 2007, 164-167.

[5] Freed, A. Application of new Fiber and Malleable

Materials for Agile Development of Augmented

Instruments and Controllers. In Proceedings of the 2008

Conference on New Interfaces for Musical Expression,

Genova, Italy 2008.

[6] Gao, M. and Hanson, C. LUMI: Live Performance

Paradigms Utilizing Software Integrated Touch Screen and

Pressure Sensitive Button Matrix. In Proceedings of the

2009 Conference on New Interfaces for Musical

Expression, Pittsburgh, PA USA 2009.

[7] Hahn, T. and Bahn, C., "Pikapika - The Collaborative

Composition of an Interactive Sonic Character,"

Organised Sound, vol. 7, pp. 229-238, 2003.

[8] Kapur, A., Tindale, A. R., Benning, M. S., and Driessen, P.

F. The KiOm: A Paradigm for Collaborative Controller

Design. In Proceedings of the 2006 Conference on New

Interfaces for Musical Expression, Paris, France, 2006.

[9] Lyons, M. J. and Tetsutani, N. Facing the music: a facial

action controlled musical interface. In Conference on

Human Factors in Computing Systems. ACM, Seattle,

Washington, 2001, 309-310.

[10] Mathews, M. and Schloss, W. A. The Radio Drum as a

Synthesizer Controller. In ICMC, Ohio State, Ohio, 1989.

[11] Merrill, D. Head-tracking for gestural and continuous

control of parameterized audio effects. In Proceedings of

the 2003 Conference on New Interfaces for Musical

Expression. National University of Singapore, Montreal,

Quebec, Canada, 2003, 218-219.

[12] Nishibori, Y. and Iwai, T., Tenori-on. In Proceedings of

the 2006 Conference on New Interfaces for Musical

Expression. IRCAM, Paris, France, 2006, 172-175.

[13] Paradiso, J. Wearable Wireless Sensing for Interactive

Media. In First International Workshop on Wearable &

Implantable Body Sensor Networks, London, 204.

[14] Ryan, J. and Salter, C. TGarden: wearable instruments and

augmented physicality. In Proceedings of the 2003

Conference on New Interfaces for Musical Expression.

National University of Singapore, Montreal, Quebec,

Canada, 2003.

[15] Trueman, D. and Cook, P. R. Bossa: The deconstructed

violin reconstructed. In ICMC, Beijing, China, 1999.

[16] Winkler, T. Making Motion Musical: Gestural Mapping

Strategies for Interactive Computer Music. In ICMC, San

Francisco, 1995.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

6

